Detección de los cambios geomorfológicos fluviales del río El Bañado y la formación de la Laguna San Juan de Candua, Chuquisaca, Bolivia

Autores/as

DOI:

https://doi.org/10.56469/rae.v4i1.1791

Palabras clave:

dinámica morfológica fluvial

Resumen

El estudio analiza los cambios de la geomorfología del sistema fluvial del río El Bañado que se encuentra en el municipio de Monteagudo (Bolivia: Chuquisaca) durante los últimos 47 años, con énfasis en su relación con la formación y cambios de la laguna San Juan de Candúa. Se emplearon imágenes satelitales de alta resolución de libre acceso como KH-9 HEXAGON, SPOT y Airbus. Los resultados muestran mediante imágenes satelitales históricas, que el río presentaba un curso sinuoso en 1978, pero entre 1980 a 1987 comenzó a rectificarse, probablemente debido a procesos naturales como erosión y sedimentación, junto con intervenciones humanas como la expansión urbana y la construcción de infraestructura vial. Estos cambios influyeron en la aparición de la laguna San Juan, visible desde 1991, cuya formación se atribuye a inundaciones, acumulación de agua superficial o alteraciones en el cauce del río El Bañado. La laguna ha experimentado fluctuaciones significativas en el área del espejo de agua notables desde el 2002, con un pico máximo en 2020 (8000 m²) asociado a lluvias intensas y eventos de inundación, seguido de una disminución en años posteriores, posiblemente debido a sequías, sedimentación o actividades humanas. Actualmente, la laguna presenta un área de 1528.2 m² en época seca, con un volumen estimado de 1,588,564 m³ de agua. Sin embargo, muestra signos de eutrofización, con más del 90% de su superficie cubierta por macrofitas flotantes, lo que afecta su dinámica ecológica. Estos resultados subrayan la importancia de monitorear la dinámica fluvial y lacustre para una adecuada gestión de los recursos hídricos, especialmente en contextos donde las actividades humanas interactúan fuertemente con sistemas naturales.

Citas

Ahmed, J. (2024), “Establishing the Hydrological Controls on Water Surface Area Variations in Oxbow Lakes”, Hydrological Processes, Vol. 38 No. 12, doi: 10.1002/hyp.70013.

Allred, E.R., Manson, P.W., Schwartz, G.M., Golany, P. and Reinke, J.W. (1971), Continuation of Studies on the Hydrology of Ponds and Small Lakes, Minnesota, USA.

Bishop, M.P., James, L.A., Shroder, J.F. and Walsh, S.J. (2012), “Geospatial technologies and digital geomorphological mapping: Concepts, issues and research”, Geomorphology, Elsevier B.V., Vol. 137 No. 1, pp. 5–26, doi: 10.1016/j.geomorph.2011.06.027.

Boothroyd, R.J., Nones, M. and Guerrero, M. (2021), “Deriving Planform Morphology and Vegetation Coverage From Remote Sensing to Support River Management Applications”, Frontiers in Environmental Science, Vol. 9 No. May, pp. 1–18, doi: 10.3389/fenvs.2021.657354.

Boothroyd, R.J., Williams, R.D., Hoey, T.B., Barrett, B. and Prasojo, O.A. (2021), “Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change”, Wiley Interdisciplinary Reviews: Water, Vol. 8 No. 1, pp. 1–27, doi: 10.1002/wat2.1496.

Chaoyong, W., Aslam, R.W., Quddoos, A., Naz, I., Tariq, A., Ullah, S., Sajjad, A., et al. (2024), “SAR image integration for multi-temporal analysis of Lake Manchar Wetland dynamics using machine learning”, Scientific Reports, Vol. 14 No. 1, p. 26669, doi: 10.1038/s41598-024-76730-1.

Chen, T., Song, C., Zhan, P., Yao, J., Li, Y. and Zhu, J. (2022), “Remote sensing estimation of the flood storage capacity of basin-scale lakes and reservoirs at high spatial and temporal resolutions”, Science of the Total Environment, Elsevier B.V., Vol. 807, doi: 10.1016/j.scitotenv.2021.150772.

CNES, C.N. d’Études S. (2023), “SPOT World Heritage Data Site”, SPOT Images Acquired by CNES’s Spot World Heritage Programme, available at: https://regards.cnes.fr/user/swh/modules/60 (accessed 13 February 2025).

Constantine, J.A., Dunne, T., Ahmed, J., Legleiter, C. and Lazarus, E.D. (2014), “Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin”, Nature Geoscience, Vol. 7 No. 12, pp. 899–903, doi: 10.1038/ngeo2282.

Dewan, A., Corner, R., Saleem, A., Rahman, M.M., Haider, M.R., Rahman, M.M. and Sarker, M.H. (2017), “Assessing channel changes of the Ganges-Padma River system in Bangladesh using Landsat and hydrological data”, Geomorphology, Vol. 276, pp. 257–279, doi: 10.1016/j.geomorph.2016.10.017.

Doxaran, D., Castaing, P. and Lavender, S.J. (2006), “Monitoring the maximum turbidity zone and detecting fine‐scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data”, International Journal of Remote Sensing, Taylor & Francis, Vol. 27 No. 11, pp. 2303–2321, doi: 10.1080/01431160500396865.

ESA. (2012), Sentinel-1: ESA’s Radar Observatory Mission for GMES Operational Services, edited by Fletcher, K., European Space Agency, AG Noordwijk, The Netherlands.

Gautier, E., Brunstein, D., Vauchel, P., Roulet, M., Fuertes, O., Guyot, J.L., Darozzes, J., et al. (2006), “Temporal relations between meander deformation, water discharge and sediment fluxes in the floodplain of the Rio Beni (Bolivian Amazonia)”, Earth Surface Processes and Landforms, Vol. 32 No. 2, pp. 230–438, doi: 10.1002/esp.

Gernez, P., Lafon, V., Lerouxel, A., Curti, C., Lubac, B., Cerisier, S. and Barillé, L. (2015), “Toward sentinel-2 high resolution remote sensing of suspended particulate matter in very turbid waters: SPOT4 (take5) experiment in the Loire and Gironde estuaries”, Remote Sensing, Vol. 7 No. 8, pp. 9507–9528, doi: 10.3390/rs70809507.

Google. (2018), “Google Earth Pro”, Google Maps/Google Earth, Santa Clara County, California, U.S.A.

Güneralp, I. and Rhoads, B.L. (2010), “Spatial autoregressive structure of meander evolution revisited”, Geomorphology, Vol. 120 No. 3–4, pp. 91–106, doi: 10.1016/j.geomorph.2010.02.010.

Heino, J., Alahuhta, J., Bini, L.M., Cai, Y., Heiskanen, A.S., Hellsten, S., Kortelainen, P., et al. (2021), “Lakes in the era of global change: moving beyond single-lake thinking in maintaining biodiversity and ecosystem services”, Biological Reviews, John Wiley & Sons, Ltd, Vol. 96 No. 1, pp. 89–106, doi: 10.1111/BRV.12647.

Hooke, J.M. (2007), “Spatial variability, mechanisms and propagation of change in an active meandering river”, Geomorphology, Elsevier, Vol. 84 No. 3–4, pp. 277–296, doi: 10.1016/J.GEOMORPH.2006.06.005.

Hou, J., Van Dijk, A.I.J.M.V. and Beck, H.E. (2019), “A global, near real-time system measuring river, lake, and reservoir dynamics”, 23rd International Congress on Modelling and Simulation - Supporting Evidence-Based Decision Making: The Role of Modelling and Simulation, MODSIM 2019, No. December, pp. 712–718, doi: 10.36334/modsim.2019.h5.houj.

IGM, I.G.M. (2021), “Bolivia Topographic Maps 1:50,000”, Perry-Castañeda Library (PCL) Map Collection, available at: https://maps.lib.utexas.edu/maps/topo/bolivia/index-50k.html.

Kong, D., Latrubesse, E.M., Miao, C. and Zhou, R. (2020), “Morphological response of the Lower Yellow River to the operation of Xiaolangdi Dam, China”, Geomorphology, Elsevier, Vol. 350, p. 106931, doi: 10.1016/J.GEOMORPH.2019.106931.

Latrubesse, E.M., Amsler, M.L., de Morais, R.P. and Aquino, S. (2009), “The geomorphologic response of a large pristine alluvial river to tremendous deforestation in the South American tropics: The case of the Araguaia River”, Geomorphology, Elsevier B.V., Vol. 113 No. 3–4, pp. 239–252, doi: 10.1016/j.geomorph.2009.03.014.

Li, Y., Zhang, Q., Cai, Y., Tan, Z., Wu, H., Liu, X. and Yao, J. (2019), “Hydrodynamic investigation of surface hydrological connectivity and its effects on the water quality of seasonal lakes: Insights from a complex floodplain setting (Poyang Lake, China)”, Science of The Total Environment, Elsevier, Vol. 660, pp. 245–259, doi: 10.1016/J.SCITOTENV.2019.01.015.

Ling, F., Li, X., Foody, G.M., Boyd, D., Ge, Y., Li, X. and Du, Y. (2020), “Monitoring surface water area variations of reservoirs using daily MODIS images by exploring sub-pixel information”, ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier, Vol. 168, pp. 141–152, doi: 10.1016/J.ISPRSJPRS.2020.08.008.

Manson, P.W., Schwartz, G.M. and Allred, E.R. (1968), Some Aspects of the Hydrology of Ponds and Small Lakes, Minnesota, USA.

Mertes, L.A.K., Daniel, D.L., Melack, J.M., Nelson, B., Martinelli, A. and Forsberg, B.R. (1995), “Spatial patterns of hydrology, geomorphology, and vegetation on the floodplain of the Amazon River in Brazil from a remote sensing perspective”, Geomorphology, Vol. 13, pp. 215–232.

Mertes, L.A.K., Dunne, T. and Martinelli, L.A. (1996), “Channel-floodplain geomorphology along the Solimões-Amazon River, Brazil”, Bulletin of the Geological Society of America, Vol. 108 No. 9, pp. 1089–1107, doi: 10.1130/0016-7606(1996)108<1089:CFGATS>2.3.CO;2.

Moss, B. (2012), “Cogs in the endless machine: Lakes, climate change and nutrient cycles: A review”, Science of The Total Environment, Elsevier, Vol. 434, pp. 130–142, doi: 10.1016/J.SCITOTENV.2011.07.069.

Neiff, J.J., Casco, S.L. and De Neiff, A.P. (2008), “Response of Eichhornia crassipes (Pontederiaceae) to water level fluctuations in two lakes with different connectivity in the Paraná River floodplain”, Revista de Biologia Tropical, Vol. 56 No. 2, pp. 613–623, doi: 10.15517/rbt.v56i2.5612.

Paulino, R.S., Martins, V.S., Novo, E.M.L.M., Maciel, D.A., Correia-Lima, D.L., Barbosa, C.C.F., Bonnet, M.P., et al. (2023), “A framework based on spectral similarity to estimate hydrological connectivity in Juruá River floodplain lakes using 3-m PlanetScope data”, Journal of Hydrology, Elsevier B.V., Vol. 625 No. PB, p. 130156, doi: 10.1016/j.jhydrol.2023.130156.

Puhakka, M., Kalliola, R., Rajasilta, M. and Salo, J. (1992), “River Types, Site Evolution and Successional Vegetation Patterns in Peruvian Amazonia”, Journal of Biogeography, JSTOR, Vol. 19 No. 6, p. 651, doi: 10.2307/2845707.

QGIS, D.T. (2020), “QGIS Geographic Information System”, Geospatial Foundation.

Rădoane, M., Perşoiu, I., Cristea, I. and F., C. (2013), “River channel planform changes based on succesive cartographic data. A methodological approach”, Journal of Geomorphology, Vol. 15, pp. 69–88.

Salo, J., Kalliola, R., Häkkinen, I., Mäkinen, Y., Niemelä, P., Puhakka, M. and Coley, P.D. (1986), “River dynamics and the diversity of Amazon lowland forest.”, Nature, Vol. 322 No. 6076, pp. 254–258.

Schallenberg, M., De Winton, M.D., Verburg, P., Kelly, D.J., Hamill, K.D. and Hamilton, D.P. (2013), “Ecosystem Services of Lakes”, Ecosystem Services in New Zealand - Conditions and Trends, pp. 203–225.

Schumm, S.A. (1963), “Sinuosity of Alluvial Rivers on the Great Plains”, Geological Society of America Bulletin, Vol. 74 No. 9, pp. 1089–1099, doi: 10.1130/0016-7606(1963)74.

Shen, G., Fu, W., Guo, H. and Liao, J. (2022), “Water Body Mapping Using Long Time Series Sentinel-1 SAR Data in Poyang Lake”, Water (Switzerland), Vol. 14 No. 12, pp. 1–26, doi: 10.3390/w14121902.

Spada, D., Molinari, P., Bertoldi, W., Vitti, A. and Zolezzi, G. (2018), “Multi-temporal image analysis for fluvial morphological characterization with application to Albanian rivers”, ISPRS International Journal of Geo-Information, Vol. 7 No. 8, doi: 10.3390/ijgi7080314.

Sun, T., Meakin, P., Jøssang, T. and Schwarz, K. (1996), “A simulation model for meandering rivers”, Water Resources Research, Vol. 32 No. 9, pp. 2937–2954, doi: 10.1029/96WR00998.

Surian, N. and Rinaldi, M. (2003), “Morphological response to river engineering and management in alluvial channels in Italy”, Geomorphology, Vol. 50 No. 4, pp. 307–326, doi: 10.1016/S0169-555X(02)00219-2.

Tandon, S.K. and Sinha, R. (2007), “Geology of large river systems”, in Gupta, A. (Ed.), Large Rivers: Geomorphology and Management, John Wiley & Sons, Ltd, pp. 7–41, doi: 10.1002/9781119412632.ch2.

Torres-Batllo, J. (2020), Mapping Historical Hydrological Changes in the Lake Poop´ o Catchment, Bolivia, with Remote Sensing, University of Surrey - United Kingdom August.

USGS, (U.S. Geological Survey). (1995), “CORONA Satellite Photography”, NASA Open Data Portal, available at: https://data.nasa.gov/dataset/CORONA-Satellite-Photography/4rni-qjx7/about_data (accessed 22 January 2025).

Venegas-Cordero, N., Mediero, L. and Piniewski, M. (2024), “Urbanization vs. climate drivers: investigating changes in fluvial floods in Poland”, Stochastic Environmental Research and Risk Assessment, Vol. 38 No. 7, pp. 2841–2857, doi: 10.1007/s00477-024-02717-z.

Wang, Z., Xie, F., Ling, F. and Du, Y. (2022), “Monitoring Surface Water Inundation of Poyang Lake and Dongting Lake in China Using Sentinel-1 SAR Images”, Remote Sensing, Vol. 14 No. 14, doi: 10.3390/rs14143473.

Winter, T.C. (1999), “Relation of streams, lakes, and wetlands to groundwater flow systems”, Hydrogeology Journal, Vol. 7 No. 1, pp. 28–45, doi: 10.1007/s100400050178.

Descargas

Publicado

2025-07-30 — Actualizado el 2025-07-31

Versiones

Cómo citar

Céspedes Llave, A. A., Bolaños Angulo, A., & Roque Marca, N. (2025). Detección de los cambios geomorfológicos fluviales del río El Bañado y la formación de la Laguna San Juan de Candua, Chuquisaca, Bolivia. AGRO - ECOLÓGICA, 4(1), 3–12. https://doi.org/10.56469/rae.v4i1.1791 (Original work published 30 de julio de 2025)

Número

Sección

Artículos Originales

Categorías