Evaluación de variedades de maíz (Zea mays) en Monteagudo: Rendimiento, adaptabilidad y resistencia a estrés

Evaluation of maize (Zea mays) varieties in Monteagudo: Yield, adaptability, and stress resistance

Autores/as

  • Heriberto Reynoso Montes Universidad San Francisco Xavier de Chuquisaca, Instituto de Agroecológica y Seguridad Alimentaria
  • Manuel Jimenez Huaman Universidad San Francisco Xavier de Chuquisaca, Instituto de Agroecológica y Seguridad Alimentaria

DOI:

https://doi.org/10.56469/rae.v3i2.1558

Palabras clave:

adaptación, estres hidrico, El Bañado, variedad canario

Resumen

La evaluación de variedades de maíz (Zea mays) es fundamental para identificar materiales con mejor adaptación a las condiciones agroclimáticas de Monteagudo, Bolivia. En este contexto, se estableció un acuerdo institucional para evaluar nueve variedades de maíz, desarrolladas por el Programa Maíz del Centro de Investigaciones Fitogenéticas de Pairumani (CIFP-Cochabamba). El estudio se realizó en el Centro Experimental El Bañado, de la Universidad San Francisco Xavier de Chuquisaca, utilizando un diseño experimental con nueve variedades y un testigo local, en una parcela de 705 m². Se analizaron características agronómicas como floración, altura de planta y mazorca, cobertura, tipo de grano y rendimiento (t/ha). Los resultados indicaron susceptibilidad al estrés hídrico y a altas temperaturas, lo que provocó desincronización floral y enfermedades foliares. La variedad local Canario tuvo el mayor rendimiento (1.76 t/ha), seguida por Aychasara-102 (1.12 t/ha). Por tanto, se concluye que la adaptabilidad al clima es clave en la selección varietal.

Citas

Abobatta, WF; Abdel-Raheem, M. 2023. Managing nematode infection in fruit orchards (en línea). s.l., IGI Global. 124 – 141p. DOI: https://doi.org/10.4018/978-1-6684-8083-0.ch007.

Abd-Elgawad, M. M. 2024. Upgrading Strategies for Managing Nematode Pests on Profitable Crops. Plants, 13(11), 1558. DOI: https:// doi.org/ 10.3390/plants13111558.

Abd-Elgawad, M. M. 2022. Understanding molecular plant–nematode interactions to develop alternative approaches for nematode control. Plants, 11(16), 2141. DOI: https://doi.org/10.3390/plants11162141.

Adejoro, MA; Fagbola, BO. 2012. Appraisal of documentation of Musa literature in west and central Africa (en línea) (En cited by: 0). Acta Horticulturae 928:41 – 46. DOI: https://doi.org/10.17660/ ActaHortic.2012.928.3.

Aguirre, O; Chávez, C; Giraud, A; Araya, M. 2016. Frequencies and population densities of plant-parasitic nematodes on banana (Musa AAA) plantations in Ecuador from 2008 to 2014; (En cited by: 6; all open access, gold open access, green open access). Agronomia Colombiana 34(1):61 – 73. DOI: https://doi.org/10.15446/ agron. colomb.v34n1.53915.

Ansari, T.; Saleem, M. 2023. Plant Parasitic Nematodes: A Silent Threat to Agricultural Output and Sustainable Approaches for Their Management. In Climate-Resilient Agriculture, Vol 1: Crop Responses and Agroecological Perspectives (pp. 799-819). Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/9783-031-37424-1_36.

Antil, S.; Kumar, R.; Pathak, D. V.; Kumari, A. 2023. Recent advances in utilizing bacteria as biocontrol agents against plant parasitic nematodes emphasizing Meloidogyne spp. Biological Control, 183, 105244. DOI: https://doi.org/10.1016/j.biocontrol.2023.105244.

Araya, M; De Waele, D. 2005. Effect of weed management on nematode numbers and their damage in different root thickness and its relation to yield of banana (Musa AAA cv. Grande Naine) (en línea) (En cited by: 4). Crop Protection 24(7):667 – 676. DOI: https://doi.org/10.1016/j. cropro.2004.11.010.

Babu, YM; Chavan, DD; Roy, A; Haque, Z. 2022. Major diseases of bananas (en línea). s.l., Nova Science Publishers, Inc. 113 – 133 p. Disponible en https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141639726&partnerID=40&md5=c94e2bc7db15bf4786400fe9a42f6747.

Bagshaw, J; Lindsay, S. 2009. Developing sustainable banana production systems: A case study from tropical Australia (en línea) (En cited by: 3). Acta Horticulturae 831:23 – 30. DOI: https://doi.org/10.17660/ ActaHortic.2009.831.2.

Bakry, F; Carreel, F; Jenny, C; Horry, J-P. 2009. Genetic improvement of banana (en línea). s.l., Springer New York. 3 – 50 p. DOI: https://doi. org/10.1007/978-0-387-71201-7_1.

De Bellaire, LDL; Essoh Ngando, J; Abadie, C; Chabrier, C; Blanco, R; Lescot, T; Carlier, J; Côte, F. 2009. Is chemical control of Mycosphaerella foliar diseases of banana sustainable? (en línea). In Acta Horticulturae. Centre de Coopération, Internationale en Recherche Agronomique pour le Développement (CIRAD), UPR Systèmes de culture bananes plantains et ananas, F-34398, Montpellier Cedex 5, TA B-26 / PS4, Bd de la Lironde, France, s.e. p. 161-170. Disponible en https://www.scopus. com/inward/record.uri?eid=2-s2.0-70350111054&partnerID=40&md5=77fa4221be2132882f3c654bcdbc5b3d.

Blanco-Pérez, R; Sáenz-Romo, MG; Vicente-Díez, I; Ibáñez-Pascual, S; Martínez-Villar, E; Marco-Mancebón, VS; Pérez-Moreno, I; CamposHerrera, R. 2020. Impact of vineyard ground cover management on the occurrence and activity of entomopathogenic nematodes and associated soil organisms (en línea) (En cited by: 16; all open access, green open access). Agriculture, Ecosystems and Environment 301. DOI: https://doi. org/10.1016/j.agee.2020.107028.

Blume, E; Reichert, JM. 2015. Banana leaf and glucose mineralization and soil organic matter in microhabitats of banana plantations under long-term pesticide use (en línea) (En cited by: 5). Environmental Toxicology and Chemistry 34(6):1232 – 1238. DOI: https://doi. org/10.1002/etc.2933.

Bouma, J.; McBratney, A. 2013. Framing soils as an actor when dealing with wicked environmental problems. Geoderma, 200, 130-139. DOI: http://dx.doi.org/10.1016/j.geoderma.2013.02.011.

Brentu, CF; Speijer, PR; Green, KR; Hemeng, BMS; De Waele, D; Coyne, DL. 2004. Micro-plot evaluation of the yield reduction potential of Pratylenchus coffeae, Helicotylenchus multicinctus and Meloidogyne javanica on plantain cv. Apantu-pa (Musa spp., AAB-group) in Ghana (en línea) (En cited by: 0). Nematology 6(3):455 – 462. DOI: https://doi. org/10.1163/1568541042360537.

Brito, FSD; Fraaije, B; Miller, RNG. 2015. Sigatoka disease complex of banana in Brazil: Management practices and future directions (en línea) (En cited by: 8). Outlooks on Pest Management 26(2):78 – 81. DOI: https://doi.org/10.1564/v26_apr_08.

Burin, P. C. 2016. Management Pratylenchus sp. in farming integration areas livestock. http://www.veterinaria.org/revistas/ redvet/n080816/081603.pdf https://www.cabidigitallibrary.org/doi/ full/10.5555/20163346025.

Ciancio, A; Rosso, LC; Lopez-Cepero, J; Colagiero, M. 2022. Rhizosphere 16S-ITS Metabarcoding Profiles in Banana Crops Are Affected by Nematodes, Cultivation, and Local Climatic Variations (en línea) (En cited by: 7; all open access, gold open access, green open access). Frontiers in Microbiology 13. DOI: https://doi.org/10.3389/fmicb.2022.855110.

Das, SC; Balamohan, TN; Poornima, K; Seenivasan, N; Velalazan, R; Van Den Bergh, I; De Waele, D. 2014. Screening of banana hybrids (phase ii hybrids) for resistance to Helicotylenchus multicinctus (en línea) (En cited by: 4). Acta Horticulturae 1026:37 – 46. DOI: https://doi. org/10.17660/actahortic.2014.1026.3.

Das, SC; Balamohan, TN; Poornima, K; Seenivasan, N; Velalazan, R; Van Den Bergh, I.; De Waele, D. 2012. Screening of banana hybrids (phase II hybrids) for resistance to Meloidogyne Incognita. In VIII International Symposium on Banana: International Symposium on Banana 1026 (pp. 29-36). DOI: https://doi.org/10.17660/ActaHortica

Desaeger, J.; Sikora, R. A.; Molendijk, L. P. 2021. Outlook: a vision of the future of integrated nematode management. In Integrated Nematode Management: State-of-the-art and visions for the future (pp. 475-483). Wallingford UK: CABI. DOI:10.1079/9781789247541.0065.

Devi, T. S.; Das, D.; Ansari, R. A.; Rizvi, R.; Sumbul, A.; Mahmood, I. 2020. Role of organic additives in the sustainable management of phytoparasitic nematodes. Management of Phytonematodes: Recent Advances and Future Challenges, 279-295. https://link.springer.com/ chapter/10.1007/978-981-15-4087-5_12

Dipta, B; Bhardwaj, S; Kaushal, M. 2021. Overview of Nutrient and Disease Management in Banana (en línea). s.l., Springer Singapore. 55 – 78 p. DOI: https://doi.org/10.1007/978-981-16-0049-4_2.

Djiwanti, SR; Wiratno; Kaushik, S. 2023. Burrowing Nematode in Spice and Fruit Crops and Their Management by Novel Biocontrol Strategies (en línea). s.l., Springer Nature. 395 – 437 p. DOI: https://doi. org/10.1007/978-981-99-2893-4_18.

Dorel, M; Lakhia, S; Achard, R. 2023. Mineral nutrition of banana in organic agriculture (en línea) (En cited by: 1). Acta Horticulturae 1367:87 – 95. DOI: https://doi.org/10.17660/ActaHortic.2023.1367.10.

Dubois, T; Coyne, DL. 2011. Integrated Pest Management of Banana (en línea). s.l., CRC Press. 121 – 144 p. DOI: https://doi.org/10.1201/ b10514-13.

Duncan, L. W.; Noling, J. W. 1998. Agricultural sustainability and nematode integrated pest management. Plant and nematode interactions, 36, 251-287. DOI: https://doi.org/10.2134/agronmonogr36.c13.

Dutta, T. K.; Phani, V. 2023. Transgenics, Application in Plant Nematode Management. In Novel Biological and Biotechnological Applications in Plant Nematode Management (pp. 203-226). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-99-2893-4_9.

Dutta, T. K.; Khan, M. R.; Phani, V. 2019. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: current status and future prospects. Current plant biology, 17, 17-32. DOI: https://doi.org/10.1016/j.cpb.2019.02.001.

Elhady, A.; Alghanmi, L.; Abd-Elgawad, M. M.; Heuer, H.; Saad, M. M.; Hirt, H. 2024. Plant-parasitic nematode research in the arid desert landscape: a systematic review of challenges and bridging interventions. Frontiers in Plant Science, 15, 1432311. DOI: doi: 10.3389/ fpls.2024.1432311.

Formowitz, B; Elango, F; Okumoto, S; Müller, T; Buerkert, A. 2007. The role of «effective microorganisms» in the composting of banana (Musa ssp.) residues (en línea) (En cited by: 29). Journal of Plant Nutrition and Soil Science 170(5):649 – 656. DOI: https://doi.org/10.1002/jpln.200700002.

Fossey, M.; Angers, D.; Bustany, C.; Cudennec, C.; Durand, P.; Gascuel-Odoux, C.; ... Walter, C. 2020. A framework to consider soil ecosystem services in territorial planning. Frontiers in Environmental Science, 8, 28. DOI: doi: 10.3389/fenvs.2020.00028.

Francisco, MS; Araújo, RC; Dos Santos, EP; Gomes, FFB; Da Cruz, GRB. 2014. Efect of management conditions on the sensory characteristics of banana (Musa spp.) cv. Pacovan (en línea) (En export date: 07 december 2024; cited by: 2). Revista Brasileira de Fruticultura 36(2):313-317. DOI:

https://doi.org/10.1590/0100-2945-111/13.

Gaidashova, S V; Van Asten, P; De Waele, D; Delvaux, B. 2009. Relationship between soil properties, crop management, plant growth and vigour, nematode occurrence and root damage in East African Highland banana-cropping systems: A case study in Rwanda (en línea) (En cited by: 25). Nematology 11(6):883 – 894. DOI: https://doi. org/10.1163/156854109X430310.

Ganry, J. 2004. Specific diversity of plant populations at rainfed scale and crop protection: The example of banana production in the French West Indies; [Diversité spécifique des peuplements végétaux à l’échelle du bassin versant et contrôle des parasites des cultures: l’exemple de la culture bananière aux Antilles françaises] (en línea) (En cited by: 2; all open access, green open access). Comptes Rendus - Biologies 327(7):621 – 627. DOI: https://doi.org/10.1016/j.crvi.2004.03.009.

Hartley, S. E. 2018. Agroecological approaches to sustainable intensification. Sustainable food and agriculture: an integrated approach, 179-184. DOI: https://doi.org/10.2134/agronmonogr36.c13.

Hartman, JB; Vuylsteke, D; Speijer, PR; Ssango, F; Coyne, DL; de Waele, D. 2010. Measurement of the field response of Musa genotypes to Radopholus similis and Helicotylenchus Multicinctus and the implications for nematode resistance breeding (en línea) (En cited by: 11). Euphytica 172(1):139 – 148. DOI: https://doi.org/10.1007/s10681-0090104-4.

de Jesus Cavalcante, MB; Escoute, J; Madeira, JP; Romero, RE; Nicole, MR; Oliveira, LC; Hamelin, C; Lartaud, M; Verdeil, J. 2024. Reactive Oxygen Species and Cellular Interactions Between Mycosphaerella fijiensis and Banana. Tropical Plant Biology 4(2):12042. DOI: https://doi.

org/10.1007/s12042-011-9071-8.

Jiang, X.; Xiang, M.; Liu, X. 2017. Nematode-trapping fungi. Microbiology Spectrum, 5(1), 10-1128. DOI: doi:10.1128 /microbiolspec. FUNK-0022-2016.

Kamble, RS; Pawar, R; Dishri, M; Dobhal, S; Kanungo, S; Sharma, A; Thakur, N. 2024. In vitro studies in red dacca (Musa acuminata): an ornamental horticultural crop (en línea) (En cited by: 0). Vegetos. DOI: https://doi.org/10.1007/s42535-024-00912-5.

Karanastasi, E; Kotsantonis, V; Pantelides, IS. 2024. Compost-Derived Bacterial Communities Offer Promise as Biocontrol Agents against Meloidogyne javanica and Promote Plant Growth in Tomato (en línea) (En cited by: 1; all open access, gold open access). Agriculture (Switzerland) 14(6). DOI: https://doi.org/10.3390/agriculture14060891.

Kema, GHJ. 2024. Banana (en línea). s.l., Elsevier. 673 – 678 p. DOI: https://doi.org/10.1016/B978-0-12-822429-8.00021-2.

Khan, M. R.; Haque, Z.; Sharma, R. K. 2023. Novel biotechnological interventions in plant nematode management technologies. In Novel Biological and Biotechnological Applications in Plant Nematode Management (pp. 167-186). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-99-2893-4_7.

Khan, M. R.; Haroun, S. A.; Rizvi, T. F. 2023. Novel Nanomaterials and Nanoformulations for Nematode Management in Agricultural Crops. In Novel Biological and Biotechnological Applications in Plant Nematode Management (pp. 227-243). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-99-2893-4_10.

Khan, Z; Gawade, BH; Chalam, VC; Ansari, AM. 2021. Root-Knot Nematodes: A Threat to Brinjal (Solanum melongena L.) Cultivation and its Eco-Friendly Management (en línea). s.l., Nova Science Publishers, Inc. 323 – 336 p. Disponible en https://www.scopus.com/inward/record. uri?eid=2-s2.0-85131178012&partnerID=40&md5=a15f606f9d5bd33abfeb1010c841ae09.

Kisaakye, J; Fourie, H; Coyne, D; Cortada, L; Khamis, FM; Subramanian, S; Masinde, S; Haukeland, S. 2023. Endophytic fungi improve management of the burrowing nematode in banana (Musa spp.) through enhanced expression of defence-related genes (en línea) (En cited by: 6; all open access, hybrid gold open access). Nematology 25(4):427 – 442. DOI: https://doi.org/10.1163/15685411-bja10229.

Lal, R. 2007. Soil science and the carbon civilization. Soil Science Society of America Journal, 71(5), 1425-1437. DOI: doi:10.2136/sssaj2007.0001.

Lassois, L; Busogoro, J-P; Jijakli, H. 2009. Banana: From origin to market; [La banane: De son origine à sa commercialisation] (en línea) (En cited by: 14). Biotechnology, Agronomy, Society and Environment 13(4):575 – 586. Disponible en https://www.scopus.com/inward/record. uri?eid=2-s2.0-75649125288&partnerID=40&md5=9e8a234e5851f95b75ac522e3d436f54.

Lindsay, SJ; Pattison, AB; Bagshaw, JS; Heisswolf, S; Wright, R. 2005. Where science meets sustainable production: A banana case study from tropical Queensland (en línea) (En cited by: 0). Acta Horticulturae 694:179 – 184. DOI: https://doi.org/10.17660/ActaHortic.2005.694.29.

López, J; Santos-Ordoñez, E; González, L. 2020. Complementation of bananas conventional breeding programs through biotechnological genetic improvement (en línea). s.l., Springer International Publishing. 25 – 50 p. DOI: https://doi.org/10.1007/978-3-030-51358-0_3.

Loranger-Merciris, G; Cabidoche, Y-M; Deloné, B; Quénéhervé, P; Ozier-Lafontaine, H. 2012. How earthworm activities affect banana plant response to nematodes parasitism (en línea) (En cited by: 20). Applied Soil Ecology 52(1):1 – 8. DOI: https://doi.org/10.1016/j.apsoil.2011.10.003.

Loranger-Merciris, G; Ozier-Lafontaine, H; Diman, J-L; Sierra, J; Lavelle, P. 2022. Fast improvement of macrofauna communities and soil quality in plantain crops converted to agroecological practices (en línea) (En cited by: 7; all open access, green open access). Pedobiologia 93-94. DOI: https://doi.org/10.1016/j.pedobi.2022.150823.

Malherbe, S; Marais, D. 2015. Nematode community profiling as a soil biology monitoring tool in support of sustainable tomato production: A case study from South Africa (en línea) (En cited by: 14; all open access, green open access). Applied Soil Ecology 93:19 – 27. DOI: https://doi. org/10.1016/j.apsoil.2015.03.011.

Mendoza, A; Sikora, RA; Kiewnick, S. 2004. Efficacy of Paecilomyces lilacinus (strain 251) for the control of Radopholus similis in banana. (en línea) (En cited by: 13). Communications in agricultural and applied biological sciences 69(3):365 – 372. Disponible en https://www.scopus. com/inward/record.uri?eid=2-s2.0-16244395179&partnerID=40&md5=6c57c999953bc01ecb7ebc426a98131d.

Miller, RN; Passos, MA; Menezes, NN; Souza, MT; Do Carmo Costa, MM; Renná Azevedo, VC; Amorim, EP; Pappas, GJ; Ciampi, AY. 2010. Characterization of novel microsatellite markers in Musa acuminata subsp. burmannicoides, var. Calcutta 4 (en línea) (En cited by: 30; all open access, gold open access, green open access). BMC Research Notes 3. DOI: https://doi.org/10.1186/1756-0500-3-148.

Moens, T; Araya, M; Swennen, R; De Waele, D. 2005. Screening of Musa cultivars for resistance to Helicotylenchus multicinctus, Meloidogyne incognita, Pratylenchus coffeae and Radopholus similis (en línea) (En cited by: 8). Australasian Plant Pathology 34(3):299 – 309. DOI: https:// doi.org/10.1071/AP05037.

Mukasa, HH; Ocan, D; De Waele, D; Rubaihayo, PR; Blomme, G. 2006. Effect of a multispecies nematode population on the root, corm, and shoot growth of East African Musa genotypes (en línea) (En cited by: 1). Biology and Fertility of Soils 43(2):229 – 235. DOI: https://doi. org/10.1007/s00374-006-0099-0.

Nhung, T. T. P.; Quoc, L. P. T. 2023. Nematicidal effect of Euptorium odoratum Linn. aqueous extract on burrowing nematodes (Radopholus similis) and its application to control toppling disease on cavendish banana (Musa acuminata). Journal of Horticultural Research, 31(2). DOI: 10.2478/johr-2023-0029.

Oerke, E. C.; Gerhards, R. 2009. DFG research training Group 722 use of information technologies for precision crop protection. DOI: 10.1524/ itit.2009.0563.

Okpara, U. T.; Fleskens, L.; Stringer, L. C.; Hessel, R.; Bachmann, F.; Daliakopoulos, I.; ... Zoumides, C. 2020. Helping stakeholders select and apply appraisal tools to mitigate soil threats: Researchers’ experiences from across Europe. Journal of environmental management, 257, 110005. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/ https://gala.gre.ac.uk/id/eprint/27322/7/27322%20OKPARA_Helping_ Stakeholders_Select_And_Apply_Appraisal_Tools_To_Mitigate_Soil_ Threats_%28AAM%29_2019.pdf.

Olivares, BO; Rey, JC; Perichi, G; Lobo, D. 2022. Relationship of Microbial Activity with Soil Properties in Banana Plantations in Venezuela (en línea) (En cited by: 17; all open access, gold open access). Sustainability (Switzerland) 14(20). DOI: https://doi.org/10.3390/su142013531.

Ortiz, R; Swennen, R. 2014. From crossbreeding to biotechnology-facilitated improvement of banana and plantain (en línea) (En cited by: 104). Biotechnology Advances 32(1):158 – 169. DOI: https://doi.org/10.1016/j. biotechadv.2013.09.010.

Özarslandan, A. 2019. New approaches for sucker selection in greenhouse banana to reduce nematode number in subtropics (en línea) (En cited by: 1). Indian Journal of Horticulture 76(1):75 – 79. DOI: https://doi.org/10.5958/0974-0112.2019.00011.2.

Ramarethinam, S; Marimuthu, S; Murugesan, N V. 2008. Effect of bionematicide, Paecilomyces lilacinus (Bio-Nematon 1.15% WP) in control of plant parasitic nematodes infesting Banana (en línea) (En cited by: 0). Pestology 32(8):15 – 20. Disponible en https://www.scopus.com/ inward/record.uri?eid=2-s2.0-51449091962&partnerID=40&md5=73fdce6807285d451dc06bd2d336c2dd.

Riascos, DH; Mosquera-Espinosa, AT; de Agudelo, F; Rosa, JMO; Oliveira, CMG; Muñoz, JE. 2019. Morphological, biochemical, and molecular diagnostics of Meloidogyne spp. associated with Musa spp. In Colombia; [Diagnóstico morfológico, bioquímico y molecular de Meloidogyne spp. asociado con Musa spp. en Colombia] (en línea) (En cited by: 2). Nematropica 49(2):229 – 245. Disponible en https:// www.scopus.com/inward/record.uri?eid=2-s2.0-85091672175&partnerID=40&md5=acc25cd1706ee4e4cb5a28d1e1472471.

Ripoche, A; Autfray, P; Rabary, B; Randriamanantsoa, R; Blanchart, E; Trap, J; Sauvadet, M; Becquer, T; Letourmy, P. 2021. Increasing plant diversity promotes ecosystem functions in rainfed rice based short rotations in Malagasy highlands (en línea) (En cited by: 15; all open access, bronze open access). Agriculture, Ecosystems and Environment 320. DOI: https://doi.org/10.1016/j.agee.2021.107576.Robinson, D. A.; Jackson, B. M.; Clothier, B. E.; Dominati, E. J.; Marchant, S. C.; Cooper, D. M.; Bristow, K. L. 2013. Advances in soil ecosystem services: Concepts, models, and applications for earth system life support. Vadose Zone Journal, 12(4), vzj2013-01. DOI: https://doi. org/10.2136/vzj2013.01.0027.

Safeena, M. I. S.; Zakeel, M. C. M. 2020. Nanobiotechnology-driven management of phytonematodes. Management of phytonematodes: recent advances and future challenges, 1-33. DOI: https://doi. org/10.1007/978-981-15-4087-5_1.

Segura, RA; Serrano, E; Pocasangre, L; Acuña, O; Bertsch, F; Stoorvogel, JJ; Sandoval, JA. 2015. Chemical and microbiological interactions between soils and roots in commercial banana plantations (Musa AAA, cv. Cavendish) (en línea) (En cited by: 15). Scientia Horticulturae 197:66 – 71. DOI: https://doi.org/10.1016/j.scienta.2015.10.028.

Selvaraj, S; Ganeshamoorthi, P; Anand, T; Raguchander, T; Seenivasan, N; Samiyappan, R. 2014. Evaluation of a liquid formulation of Pseudomonas fluorescens against Fusarium oxysporum f. sp. cubense and Helicotylenchus multicinctus in banana plantation (en línea) (En cited by: 42). BioControl 59(3):345 – 355. DOI: https://doi.org/10.1007/ s10526-014-9569-8.

Sikora, R. A.; Helder, J.; Molendijk, L. P.; Desaeger, J.: Eves-van den Akker, S; Mahlein, A. K. 2023. Integrated nematode management in a world in transition: constraints, policy, processes, and technologies for the future. Annual Review of Phytopathology, 61(1), 209-230. DOI: https://doi.org/10.1146/annurev-phyto-021622-113058.

Simard, S. W. 2009. Mycorrhizal networks and complex systems: Contributions of soil ecology science to managing climate change effects in forested ecosystems. Canadian Journal of Soil Science, 89(4), 369-382. t 2009. DOI: https://doi.org/10.4141/cjss08078.

Soto-Barrientos, N; de Oliveira, J; Vega-Obando, R; Montero-Caballero, D; Vargas, B; Hernández-Gamboa, J; Orozco-Solano, C. 2011. In-vitro predatory activity of nematophagous fungi from Costa Rica with potential use for controlling sheep and goat parasitic nematodes (en línea) (En cited by: 13). Revista de Biologia Tropical 59(1):37 – 52. Disponible en https://www.scopus.com/inward/record. uri?eid=2-s2.0-79952782468&partnerID=40&md5=db304d68553ee18da66747ae052c68d6.

Sousa, ABP; Rocha, A de J; Oliveira, WD dos S; Rocha, L de S; Amorim, EP. 2024. Phytoparasitic Nematodes of Musa spp. with Emphasis on Sources of Genetic Resistance: A Systematic Review (en línea) (En cited by: 1; all open access, gold open access). Plants 13(10). DOI: https://doi. org/10.3390/plants13101299.

Su, L; Shen, Z; Ou, Y; Tao, C; Ruan, Y; Li, R; Shen, Q. 2017. Novel soil fumigation strategy suppressed plant-parasitic nematodes associated with soil nematode community alterations in the field (en línea) (En cited by: 4). Applied Soil Ecology 121:135 – 142. DOI: https://doi. org/10.1016/j.apsoil.2017.09.039.

Sundararaju, P; Swarnakumari, N; Uma, S. 2008. Evaluation of banana (Musa spp) germplasm against root-knot nematode (Meloidogyne incognita) (en línea) (En cited by: 2). Indian Journal of Agricultural Sciences 78(6):563 – 566. Disponible en https://www.scopus.com/ inward/record.uri?eid=2-s2.0-54549099106&partnerID=40&md5=951c25ce514f3cdef9cf17d319dc4ef9.

Tabarant, P; Villenave, C; Risède, J-M; Roger-Estrade, J; Dorel, M. 2011. Effects of organic amendments on plant-parasitic nematode populations, root damage, and banana plant growth (en línea) (En cited by: 20). Biology and Fertility of Soils 47(3):341 – 347. DOI: https://doi. org/10.1007/s00374-011-0541-9.

Tixier, P; Malézieux, E; Dorel, M; Wery, J. 2008. SIMBA, a model for designing sustainable banana-based cropping systems (en línea) (En cited by: 45). Agricultural Systems 97(3):139 – 150. DOI: https://doi. org/10.1016/j.agsy.2008.02.003.

Tixier, P; Salmon, F; Chabrier, C; Quénéhervé, P. 2008. Modelling pest dynamics of new crop cultivars: The FB920 banana with the Helicotylenchus multicinctus-Radopholus similis nematode complex in Martinique (en línea) (En cited by: 13). Crop Protection 27(11):1427 – 1431. DOI: https://doi.org/10.1016/j.cropro.2008.06.004.

Tripathi, JN; Tripathi, L. 2024. Using CRISPR-Cas9 genome editing to enhance disease resistance in banana (en línea) (En cited by: 0). CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 19(1). DOI: https://doi.org/10.1079/ cabireviews.2024.0043.

Tripathi, L; Ntui, VO; Tripathi, JN. 2024. Application of CRISPR/ Cas-based gene-editing for developing better banana (en línea) (En cited by: 2; all open access, gold open access). Frontiers in Bioengineering and Biotechnology 12. DOI: https://doi.org/10.3389/fbioe.2024.1395772.

Tripathi, L; Tripathi, JN; Roderick, H; Atkinson, HJ. 2013. Engineering nematode resistant plantains for sub-Saharan Africa (en línea) (En cited by: 7). Acta Horticulturae 974:99 – 108. DOI: https://doi.org/10.17660/ actahortic.2013.974.11.

Ugarte, CM; Zaborski, ER; Wander, MM. 2013. Nematode indicators as integrative measures of soil condition in organic cropping systems (en línea) (En cited by: 73). Soil Biology and Biochemistry 64:103 – 113. DOI: https://doi.org/10.1016/j.soilbio.2013.03.035.

Vereecken, H.; Schnepf, A.; Hopmans, J. W.; Javaux, M.; Or, D.; Roose, T., Young, I. M. 2016. Modeling soil processes: Review, key challenges, and new perspectives. Vadose zone journal, 15(5), vzj2015-09. DOI: https://doi.org/10.2136/vzj2015.09.0131.

Vidaurre, D; Rodríguez, A; Uribe, L. 2020. Edaphic factors and entomopathogenic nematodes in a neotropical banana agroecosystem.; [Factores edáficos y nematodos entomopatógenos en un agroecosistema neotropical de banana] (en línea) (En cited by: 2; all open access, gold open access). Revista de Biologia Tropical 68(1):276 – 288. DOI: https:// doi.org/10.15517/rbt.v68i1.37680.

Vuppalapati, C; Ilapakurti, A; Vissapragada, S; Kedari, S; Mamidi, V; Vuppalapati, R; Kedari, S; Shankar, J. 2023. Ecuador Banana Production & Democratization of Climate Change Machine Learning Models to Mobile Edge Devices! (en línea). In Proceedings - 2023 Congress in Computer Science, Computer Engineering, and Applied Computing, CSCE 2023. s.l., Institute of Electrical and Electronics Engineers Inc. p. 405 – 412 DOI: https://doi.org/10.1109/CSCE60160.2023.00072.

Waweru, BW; Losenge, T; Kahangi, EM; Dubois, T; Coyne, D. 2013. Potential biological control of lesion nematodes on banana using Kenyan strains of endophytic Fusarium oxysporum (en línea) (En cited by: 17). Nematology 15(1):101 – 107. DOI: https://doi.org/10.1163/156854112X645606.

Westerdahl, B. B. 2021. Scenarios for sustainable management of plant parasitic nematodes. Indian Phytopathology, 74(2), 469-475. DOI: https://doi.org/10.1007/s42360-021-00370-y.

Yang, B; Banerjee, S; Herzog, C; Ramírez, AC; Dahlin, P; van der Heijden, MGA. 2021. Impact of land use type and organic farming on the abundance, diversity, community composition and functional properties of soil nematode communities in vegetable farming (en línea) (En cited by: 36; all open access, hybrid gold open access). Agriculture, Ecosystems and Environment 318. DOI: https://doi.org/10.1016/j.agee.2021.107488.

Zhang, Z; Zhang, X; Xu, M; Zhang, S; Huang, S; Liang, W. 2016. Responses of soil micro-food web to long-term fertilization in a wheat-maize rotation system (en línea) (En cited by: 44). Applied Soil Ecology 98:56 – 64. DOI: https://doi.org/10.1016/j.apsoil.2015.09.008.

Descargas

Publicado

2024-12-31

Cómo citar

Reynoso Montes, H., & Jimenez Huaman, M. (2024). Evaluación de variedades de maíz (Zea mays) en Monteagudo: Rendimiento, adaptabilidad y resistencia a estrés: Evaluation of maize (Zea mays) varieties in Monteagudo: Yield, adaptability, and stress resistance. AGRO - ECOLÓGICA, 3(2). https://doi.org/10.56469/rae.v3i2.1558

Número

Sección

Short Comunicactions

Categorías