Suelos y los servicios ecosistémicos

Soils and ecosystem services

Autores/as

  • Elke Noellemeyer Profesora de la Cátedra de Edafología, Facultad de Agronomía Universidad Nacional de La Pampa (UNLPam), Santa Rosa, Argentina. Investigadora Asociada. Proyecto BEISA 3, Instituto de Agroecología y Seguridad Alimentaria, Facultad de Ciencias Agrarias, Universidad Mayor, Real y Pontificia de San Francisco Xavier de Chuquisaca, Casilla postal 1046, Calle Calvo Nº 132, Sucre- Bolivia.

DOI:

https://doi.org/10.56469/rae.v2i1.2063

Resumen

La materia orgánica del suelo, y en particular el elemento más abundante en ella, el Carbono (C), son los que movilizan la mayoría de los procesos biológicos, físicos y químicos que ocurren en el suelo.

El manejo de la materia orgánica del suelo (MOS) se ha centrado tradicionalmente en la mejora de la productividad de los cultivos. Por lo tanto, MOS se ha considerado principalmente como una fuente de nutrientes para las plantas, y las prácticas agrícolas fueron desarrollados con la premisa de extraer más fácilmente los nutrientes vegetales durante la fase de cultivo y para reponer las reservas de nutrientes durante la fase de no-cultivo de la rotación (Whitbread et al. 2000). La rotación de cultivos de cosecha y barbechos a base de pasturas perennes confiere estabilidad al sistema del suelo y era un sistema de producción agrícola sostenible hasta la llegada de los fertilizantes inorgánicos, herbicidas, el mejoramiento genético de cultivos de alto rendimiento y la innovación tecnológica de la labranza mecanizada, que en su conjunto constituyó la llamada “revolución verde”. Estos cambios globales provocaron una mejora sustancial en la producción de alimentos pero también producen un desacoplamiento de los procesos biológicos con las concentraciones de los nutrientes esenciales en el suelo (Tonitto et al. 2006). La disponibilidad de fuentes de nitrógeno sintético de bajo costo y herbicidas eficientes ha promovido esta
tendencia, y permitió a vastas áreas de las tierras más productivas del mundo para ser cultivadas con un tipo de cultivo durante períodos prolongados (Tilman et al. 2002). El problema inherente asociado con este tipo de manejo de las tierras es una reducción drástica de la diversidad vegetal sobre el suelo, que también se traduce en una disminución de la actividad y la
diversidad microbiana del suelo (Milcu et al. 2010), y por lo tanto en una pérdida de las funciones vitales el suelo (Nielsen et al. 2011). La producción de biomasa, la protección de los seres humanos y el medio ambiente, reservorio de genes, base física de
las actividades humanas, el origen de las materias primas, y el patrimonio geogénica y cultural se han identificado como principales funciones del suelo (Blum 2005). Los suelos son organismos vivos y sus múltiples funciones ecosistémicas están íntimamente relacionados con las transformaciones y la dinámica de la MOS, que están mediadas por la actividad biótica del suelo y la dinámica estructural del suelo (Six et al. 2002). Por lo tanto, el manejo del suelo para múltiples servicios ecosistémicos tiene que centrarse en el vínculo entre la MOS, la estructura del suelo y la biota del suelo y los factores que regulan de este enlace (Six et al. 2004, Wardle et al. 2004).

Recientemente, se ha producido un fuerte enfoque en la MOS como reservorio de C y un mecanismo de secuestro de C y la protección del cambio climático (Lal 2004, Powlson et al. 2011), pero mucho menos atención fue dada a la gestión de los servicios de regulación, los culturales y los de apoyo. La importancia del carbono del suelo en relación a abordar apremiantes problemas mundiales a través de la provisión de diversos servicios ecosistémicos ha sido reconocido por los responsables políticos hasta hace tiempos muy recientes (Victoria et al. 2012).

Citas

Adema, E.O., D.E. Buschiazzo, F.J. Babinec, T.E. Rucci & V.F.G. Hermida. 2004. Mechanical control of shrubs in a semiarid region of Argentina and its effect on soil water content and grassland productivity. Agric. Water Manag. 68, 185–194. https://doi:10.1016/j.agwat.2004.04.001

Alletto, L., Y. Coquet & E. Justes. 2011. Effects of tillage and fallow period management on soil physical behaviour and maize development. Agric. Water Manag. 102, 74–85. https://doi:10.1016/j.agwat.2011.10.008

Ayuke, F.O., L. Brussaard, B. Vanlauwe, J. Six, D.K. Lelei, C.N. Kibunja & M.M. Pulleman. 2011 Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Appl. Soil Ecol. 48, 53–62. https://doi:10.1016/j.apsoil.2011.02.001

Ballantine, J.-A.C., G.S. Okin, D.E. Prentiss & D.A. Roberts. 2005. Mapping North African landforms using continental scale unmixing of

MODIS imagery. Remote Sens. Environ. 97, 470–483. https://doi:10.1016/j.rse.2005.04.023

Barto, E.K., F. Alt, Y. Oelmann, W. Wilcke & M.C. Rillig. 2010. Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biol. Biochem. 42, 2316–2324. https://doi:10.1016/j.soilbio.2010.09.008

Blum, W.E.H. 2005. Functions of Soil for Society and the Environment. Rev. Environ. Sci. Bio/ Technology 4, 75–79. https://doi:10.1007/s11157-005-2236-x

Cadisch, G., H. Imhof, S. Urquiaga, R. Boddey & K. Giller. 1996. Carbon turnover ([delta] 13C) and nitrogen mineralization potential of particulate light soil organic matter after rainforest clearing. Soil Biol. Biochem. 28, 1555–1567.

Carter, M 2004. Researching structural complexity in agricultural soils. Soil Tillage Res. 79, 1–6. https://doi:10.1016/j.still.

Cerda, A. 2000. Aggregate stability against water forces under different climates on agriculture land and scrubland in southern Bolivia. Plant Soil 57, 159–166.

Chivenge, P., B.Vanlauwe, R. Gentile & J. Six. 2011. Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biol. Biochem. 43, 657–666.

Costanza, R., R. Arge, R. Groot, S. Farberk, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V.O Neill, J. Paruelo, R.G. Raskin & P. Suttonkk. 1997. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260.

Dexter, A., E. Czyz, G. Richard & A. Reszkowska. 2008. A user-friendly water retention function that takes account of the textural and structural pore spaces in soil. Geoderma 143, 243–

Dominati, E., M. Patterson & A. Mackay, A. 2010. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 69, 1858–1868. https://doi:10.1016/j.ecolecon.2010.05.002

Elmholt, S., P. Schjønning, L.J. Munkholm & K. Debosz. 2008. Soil management effects on aggregate stability and biological binding.

Geoderma 144, 455–467. https://doi:10.1016/j.geoderma.2007.12.016

Fattet, M., Y. Fu, M.Ghestem, W. Ma, M.Foulonneau, J. Nespoulous, Y. Le Bissonnais, & Stokes. 2011. Effects of vegetation type on soil

resistance to erosion: Relationship between aggregate stability and shear strength. Catena 87, 60–69. https://doi:10.1016/j.catena.2011.05.006

Fernández, R., A. Quiroga, C. Zorati & E. Noellemyer. 2010. Carbon contents and respiration rates of aggregate size fractions under no-till and conventional tillage. Soil Tillage Res. 109, 103–109. https://doi:10.1016/j.still.2010.05.002

Franzluebbers, A., J. Stuedemann. 2008. Soil physical responses to cattle grazing cover crops under conventional and no tillage in the Southern Piedmont USA. Soil Tillage Res. 100, 141–153. https://doi:10.1016/j.still.2008.05.011

Hamza, M., W. Anderson. 2005. Soil compaction in cropping systemsA review of the nature, causes and possible solutions. Soil Tillage Res. 82, 121–145. https://doi:10.1016/j.still.2004.08.009

Hevia, G.G., M. Mendez & D.E. Buschiazzo. 2007. Tillage affects soil aggregation parameters linked with wind erosion. Geoderma 140, 90–96. https://doi:10.1016/j.geoderma.2007.03.001

Holeplass, H., B.R. Singh & R. Lal. 2004. Carbon sequestration in soil aggregates under different crop rotations and nitrogen fertilization in an inceptisol in southeastern Norway. Nutr. Cycl. Agroecosystems 70, 167–177.

Hollinger, S.E., C.J. Bernacchi & T.P. Meyers. 2005. Carbon budget of mature no-till ecosystem in North Central Region of the United States. Agric. For. Meteorol. 130, 59–69. https://doi:10.1016/j.agrformet.2005.01.005

Horn, R., & A. Smucker. 2005. Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils. Soil Tillage Res. 82, 5–14. https://doi:10.1016/j.still.2005.01.002

Keller, T., J. Sutter, A.K. Nissen & T. Rydberg. 2012. Using field measurement of saturated soil hydraulic conductivity to detect low-yielding zones in three Swedish fields. Soil Tillage Res. 124, 68–77. https://doi:10.1016/j.still.2012.05.002

Kirkby, M.J., Y. Le Bissonais, T.J. Coulthard, J. Daroussin & M.D. Mcmahon. 2000. The development of land quality indicators for soil

degradation by water erosion. Environment 81, 125–135.

Kong, A.Y. & J.Six. 2012. Microbial community assimilation of cover crop rhizodeposition within soil microenvironments in alternative

and conventional cropping systems. Plant Soil 356, 315–330. https://doi:10.1007/s11104-011-1120-4

Kong, A.Y.Y., K.M. Scow, A.L. Córdova-Kreylos, W.E. Holmes & J. Six. 2011. Microbial community composition and carbon cycling

within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biol. Biochem. 43, 20–30. https://doi:10.1016/j.soilbio.2010.09.005

Kong, A.Y.Y. & J. Six. 2010. Tracing Root vs. Residue Carbon into Soils from Conventional and Alternative Cropping Systems. Soil Sci.

Soc. Am. J. 74, 1201–1210. https://doi:10.2136/sssaj2009.0346

Lal, R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123, 1–22. https://doi:10.1016/j.geoderma.2004.01.032

Lal, R., D.C. Reicosky & J.D. Hanson. 2007. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Tillage Res. 93, 1–12. https://doi:10.1016/j.still.2006.11.004

Lal, R. 2009. Soil quality impacts of residue removal for bioethanol production☆. Soil Tillage Res. 102, 233–241. https://doi:10.1016/j.still.2008.07.003

Li, J., G.S. Okin, L.J. Alvarez & H.E. Epstein. 2008. Sediment deposition and soil nutrient heterogeneity in two desert grassland ecosystems, southern New Mexico. Plant Soil 19, 67–84. https://doi:10.1007/s11104-008-9850-7

López, M.V., N. Blanco-Moure & M.A. Limón, R. Gracia. 2012. No tillage in rainfed Aragon (NE Spain): Effect on organic carbon in the soil surface horizon. Soil Tillage Res. 118, 61–65. https://doi:10.1016/j.still.2011.10.012

López, M.V., J.M. de Dios Herrero, G.G. Hevia, R. Gracia & D.E. Buschiazzo. 2007. Determination of the wind-erodible fraction of soils using different methodologies. Geoderma 139, 407–411. https://doi:10.1016/j.geoderma.2007.03.006

López, M.V., D. Moret, R. Gracia & J.L. Arrúe. 2003. Tillage effects on barley residue cover during fallow in semiarid Aragon. Soil Tillage Res. 72, 53–64. https://doi:10.1016/S0167-1987(03)00047-3

Lorenz, K., R. Lal, & M.J. Shipitalo. 2006. Stabilization of organic carbon in chemically separated pools in no-till and meadow soils in

Northern Appalachia. Geoderma 137, 205–211. https://doi:10.1016/j.geoderma.2006.08.010

Milcu, A., E. Thebault, S. Scheu & N. Eisenhauer. 2010. Plant diversity enhances the reliability of belowground processes. Soil Biol. Biochem. 42, 2102–2110. https://doi:10.1016/j.soilbio.2010.08.005

Nielsen, U.N., E. Ayres, D.H. Wall & R.D. Bardgett. 2011. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. Eur. J. Soil Sci. 62, 105–116. https://doi:10.1111/j.1365-2389.2010.01314.x

Niewczas, J. 2003. Index of soil aggregates stability as linear function value of transition matrix elements. Soil Tillage Res. 70, 121–130. https://doi:10.1016/S0167-1987(02)00155-1

Noellemeyer, E., F. Frank, C. Alvarez, G. Morazzo & A. Quiroga. 2008. Carbon contents and aggregation related to soil physical and

biological properties under a land-use sequence in the semiarid region of central Argentina. Soil Tillage Res. 99, 179–190. https://doi:10.1016/j. still.2008.02.003

Oztas, T. 2003. Changes in vegetation and soil properties along a slope on overgrazed and eroded rangelands. J. Arid Environ. 55, 93–

https://doi:10.1016/S0140-1963(02)00267-7

Plante, A.F. &W.B. McGill. 2002. Soil aggregate dynamics and the retention of organic matter in laboratory-incubated soil with differing simulated tillage frequencies. Soil Tillage Res. 66, 79–92.

Polyakov, V. & R. Lal. 2004. Modeling soil organic matter dynamics as affected by soil water erosion. Environ. Int. 30, 547–56. https://doi:10.1016/j.envint.2003.10.011

Powlson, D.S., A.P. Whitmore & K.W.T. Goulding. 2011. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur. J. Soil Sci. 62, 42–55. https://doi:10.1111/j.1365-2389.2010.01342.x

Pulleman, M., R. Creamer, U. Hamer, J. Helder, C. Pelosi, G. Pérès & M. Rutgers. 2012. Soil biodiversity, biological indicators and soil

ecosystem services—an overview of European approaches. Curr. Opin. Environ. Sustain. 4, 529–538. https://doi:10.1016/j.cosust.2012.10.009

Pulleman, M.M. & J.Y.C. Marinissen. 2004. Physical protection of mineralizable C in aggregates from long-term pasture and arable soil. Geoderma 120, 273–282. https://doi:10.1016/j.geoderma.2003.09.009

Quiroga, A., R. Fernández & E. Noellemeyer. 2009. Grazing effect on soil properties in conventional and no-till systems. Soil Tillage Res. 105, 164–170. https://doi:10.1016/j.still.2009.07.003

Restovich, S.B., A.E. Andriulo & S.I. Portela. 2012. Introduction of cover crops in a maize–soybean rotation of the Humid Pampas: Effect on nitrogen and water dynamics. F. Crop. Res. 128, 62–70. https://doi:10.1016/j.fcr.2011.12.012

Rhoton, F. & M. Shipitalo. 2002. Runoff and soil loss from midwestern and southeastern US silt loam soils as affected by tillage practice and soil organic matter content. Soil Tillage Res. 66, 1–11.

Robinson, D. A., N. Hockley, D. Cooper, B. Emmett, A. M.Keith, I. Lebron, B. Reynolds, E.Tipping, a.M.Tye, C.W.Watts, W.R.Whalley,

H.I.J.Black, G.P.Warren & J.S.Robinson. 2012. Natural capital and ecosystem services, developing an appropriate soils framework as a

basis for valuation. Soil Biol. Biochem. 1–11. https://doi:10.1016/j.soilbio.2012.09.008

Rockström, J., P. Kaumbutho, J. Mwalley, A.W. Nzabi, M. Temesgen, J. Mawenya, J. Barron, J. Mutua & S. Damgaard-Larsen. 2009. Conservation farming strategies in East and Southern Africa: Yields and rain water productivity from onfarm action research. Soil Tillage Res. 103, 23–32. https://doi:10.1016/j.still.2008.09.013

Santos, N.Z. dos, J. Dieckow, C. Bayer, R. Molin, N. Favaretto, V. Pauletti & J.T. Piva. 2011. Forages, cover crops and related shoot and root additions in no-till rotations to C sequestration in a subtropical Ferralsol. Soil Tillage Res. 111, 208–218. https://doi:10.1016/j.still.2010.10.006

Schuller, P., D.E.Walling, A. Sepúlveda, A. Castillo & I. Pino. 2007. Changes in soil erosion associated with the shift from conventional tillage to a no-tillage system, documented using 137Cs measurements. Soil Tillage Res. 94, 183–192. https://doi:10.1016/j.still.2006.07.014

Scott, N. a, K.R. Tate, D.J. Giltrap, C. Tattersall Smith, R.H. Wilde, P.F.J. Newsome & M.R. Davis. 2002. Monitoring land-use change effects on soil carbon in New Zealand: quantifying baseline soil carbon stocks. Environ. Pollut. 116 Suppl , S167–86.

Six, J., H. Bossuyt, S. Degryze & K. Denef. 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31. https://doi:10.1016/j.still.2004.03.008

Six, J., R.T. Conant, E.A. Paul & K. Paustian. 2002. Stabilization mechanisms of soil organic matter : Implications for C-saturation of soils. Plant Soil 155–176.

Six, J., E.T. Elliott & K. Paustian. 2000. Soil macroaggregate turnover and microaggregate formation : a mechanism for C sequestration under no-tillage agriculture. J. Soil Sci. 32, 2099–2103.

Six, J. & K. Paustian. 2014. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biol. Biochem. 68, A4–A9.

Smith, J.M.B.J.L. & V.L.B.H. Bolton. 2003. Priming effect and C storage in semi-arid no-till spring crop rotations. Can. J. Soil Sci. 237–244. https://doi:10.1007/s00374-003-0587-4

Soane, B.D., B.C. Ball, J. Arvidsson, G. Basch, F. Moreno, &J. Roger-Estrade. 2012. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 118, 66–87. https://doi:10.1016/j.still.2011.10.015

Steffens, M., K. Kolbl, A. Totsche & I. Kogelknabner. 2008. Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P.R. China). Geoderma 143, 63–72. https://doi:10.1016/j.geoderma.2007.09.004

Swinton, S.M., S.K. Hamilton, F. Lupi, G.P. Robertson & E. Barrios. 2007. Soil biota, ecosystem services and land productivity. Ecol. Econ. 64, 269–285.

Tilman, D., K.G. Cassman, P. Matson, A. R. Naylor & S. Polasky. 2002. Agricultural sustainability and intensive production practices. Nature 418, 71–7. https://doi:10.1038/nature01014

Tonitto, C., M. David & L. Drinkwater. 2006. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A metaanalysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 112, 58–72. https://doi:10.1016/j.agee.2005.07.003

Urbanek, E., A.J.M. Smucker & R. Horn. 2011. Total and fresh organic carbon distribution in aggregate size classes and single aggregate regions using natural 13 C / 12 C tracer. Geoderma 164, 164–171. https://doi:10.1016/j.geoderma.2011.05.020

Uribe, T.O., M.E. Mastrangelo, D.V. Torrez, A. Piaz, M. Vallejos, J. Eduardo, S. Ceja, F. Gallego, L.C. Peña, N.E. Mellado, J.F. Flores, R.G.

Mairhofer, Z.G. Espino, L. Salguero, C.M. Martinez-peralta, O. Ochoa, L.P. Volkow, J. Emilio, I. Sánchez-rose, M. Weeks, D.A. García, I. Bueno, A. Carmona, F.C. Videla, C.S. Ferrer, M. Elisa, F. Buss, G.L. Carapia, M.N. Cruz, R.T. Hermoza, D. Benet, Y. Venegas, P. Balvanera, T.H. Mwampamba, E.L. Chavero, E. Noellemeyer & M. Maass. 2014. Estudios transdisciplinarios en socio-ecosistemas :

reflexiones teóricas y su aplicación en contextos latinoamericanos Transdisciplinary studies in ocio-ecosystems : Theoretical considerations and its application in Latin American contexts. Investig. Ambient. Cienc. y Política Pública 123–136.

Victoria, R., S. Banwart, H. Black, J. Ingram, H. Joosten, E. Milne, E. Noellemeyer & Y. Baskin. 2012. The benefits of soils carbon, in: UNEP Yearbook 2012. UNEP, Nairobi, pp. 19–33.

Wardle, D.A., R.D. Bardgett, J.N. Klironomos, H. Setälä, V. Puten, H.Der, Wim & D.H.Wall. 2004. Ecological linkages between aboveground and belowground biota. Science (80-. ). 304, 1629–1633.

Whitbread, A.M., G.J.Blair & R.D.B.Lefroy. 2000. Managing legume leys, residues and fertilisers to enhance the sustainability of wheat cropping ystems in Australia:: 1. The effects on wheat yields and nutrient balances. Soil Tillage Res. 54, 63–75.

Zach, A., H.Tiessen & E. Noellemeyer. 2006. Carbon Turnover and Carbon-13 Natural Abundance under Land Use Change in Semiarid Savanna Soils of La Pampa, Argentina. Soil Sci. Soc. Am. J. 70, 1541–1546. https://doi:10.2136/sssaj2005.0119

Zhu, B., L.Yi, L.Guo, G. Chen, Y. Hu, H. Tang, C.Xiao, X. Xiao, G. Yang, S.N. Acharya & Z. Zeng. 2012. Performance of two winter cover

crops and their impacts on soil properties and two subsequent rice crops in Dongting Lake Plain, Hunan, China. Soil Tillage Res. 124,

–101. https://doi:10.1016/j.still.2012.05.007

Zink, A., H. Fleige & R. Horn. 2011. Verification of harmful subsoil compaction in loess soils. Soil Tillage Res. 114, 127–134. https://doi:10.1016/j.still.2011.04.004

Zobeck, T., T. Skidmore, E. Lamb, J. Merrill, S. Lindstrom, M. Mokma & R.DL Yoder. 2003. Aggregate-mean diameter and wind-erodible soil predictions using dry aggregate-size distributions. Soil Sci. Soc. Am. J. 67, 425–436.

Zotarelli, L., B. Alves, S. Urquiaga, E. Torres, H. Dos Santos, K. Paustian, R. Boddey & J. Six. 2005. Impact of tillage and crop rotation on

aggregate-associated carbon in two Oxisols. Soil Sci. Soc. Am. J. 69, 482–491.

Descargas

Publicado

2018-04-04

Cómo citar

Noellemeyer, E. (2018). Suelos y los servicios ecosistémicos: Soils and ecosystem services. AGRO - ECOLÓGICA, 2(1), 124–132. https://doi.org/10.56469/rae.v2i1.2063

Número

Sección

Artículos Originales